BC Calc WK8 Tuesday	BC	Calc	WK8 Tu	resdery
---------------------	----	------	--------	---------

Name	
------	--

11. Suppose that function f(x) is approximated near x = 0 by a sixth-degree Taylor polynomial $P_6(x) = 3x - 4x^3 + 5x^6$. Give the value of each of the following:

- (a) f(0)
- (b) f'(0)
- (c) f'''(0)
- (d) $f^{(5)}(0)$
- (e) $f^{(6)}(0)$

- 12. (Calculator Permitted) Suppose that g is a function which has continuous derivatives, and that g(5) = 3, g'(5) = -2, g''(5) = 1, g'''(5) = -3
 - (a) What is the Taylor polynomial of degree 2 for g near 5? What is the Taylor polynomial of degree 3 near 5?

(b) Use the two polynomials that you found in part (a) to approximate g(4.9).

For problems 13-16, suppose that $P_2(x) = a + bx + cx^2$ is the second degree Taylor polynomial for the function f about x = 0. What can you say about the signs of a, b, and c, if f has the graphs given below?

13.

14.

15.

16.

18. Use the fourth-degree Taylor approximation of $\cos x \approx 1 - \frac{x^2}{2!} + \frac{x^4}{4!}$ for x near 0 to find $\lim_{x \to 0} \frac{1 - \cos x}{x}$.

19. Estimate the integral $\int_0^1 \frac{\sin t}{t} dt$ using a Taylor polynomial for $\sin t$ about t = 0 of degree 5.

Multiple Choice

20. If f(0)=0, f'(0)=1, f''(0)=0, and f'''(0)=2, then which of the following is the third-order Taylor polynomial generated by f(x) at x = 0?

(A)
$$2x^3 + x$$
 (B) $\frac{1}{3}x^3 + \frac{1}{2}x$ (C) $\frac{2}{3}x^3 + x$ (D) $2x^3 - x$ (E) $\frac{1}{3}x^3 + x$

21. Which of the following is the coefficient of x^4 in the Maclaurin polynomial generated by $\cos(3x)$?

(A)
$$\frac{27}{8}$$

(C)
$$\frac{1}{24}$$

(A)
$$\frac{27}{8}$$
 (B) 9 (C) $\frac{1}{24}$ (D) 0 (E) $-\frac{27}{8}$

22. Which of the following is the Taylor polynomial generated by $f(x) = \cos x$ at $x = \frac{\pi}{2}$?

(A)
$$\left(x - \frac{\pi}{2}\right) - \frac{\left(x - \frac{\pi}{2}\right)^3}{3!} + \frac{\left(x - \frac{\pi}{2}\right)^4}{4!}$$
 (B) $1 + \frac{\left(x - \frac{\pi}{2}\right)^2}{2!} + \frac{\left(x - \frac{\pi}{2}\right)^4}{4!}$ (C) $1 - \frac{\left(x - \frac{\pi}{2}\right)^2}{2!} + \frac{\left(x - \frac{\pi}{2}\right)^4}{4!}$

(B)
$$1 + \frac{\left(x - \frac{\pi}{2}\right)^2}{2!} + \frac{\left(x - \frac{\pi}{2}\right)^4}{4!}$$

(C)
$$1 - \frac{\left(x - \frac{\pi}{2}\right)^2}{2!} + \frac{\left(x - \frac{\pi}{2}\right)^4}{4!}$$

(D)
$$1 - \left(x - \frac{\pi}{2}\right)^2 + \left(x - \frac{\pi}{2}\right)^2$$

(D)
$$1 - \left(x - \frac{\pi}{2}\right)^2 + \left(x - \frac{\pi}{2}\right)^4$$
 (E) $-\left(x - \frac{\pi}{2}\right) + \frac{\left(x - \frac{\pi}{2}\right)^3}{6}$

23. (Calculator Permitted) Which of the following gives the Maclaurin polynomial of order 5 approximation to $\sin(1.5)$?

(A) 0.965

(B) 0.985 (C) 0.997

(D) 1.001

(E) 1.005

24. Which of the following is the quadratic approximation for $f(x) = e^{-x}$ at x = 0?

(A)
$$1-x+\frac{1}{2}x^2$$

(A)
$$1-x+\frac{1}{2}x^2$$
 (B) $1-x-\frac{1}{2}x^2$ (C) $1+x+\frac{1}{2}x^2$ (D) $1+x$ (E) $1-x$

(C)
$$1+x+\frac{1}{2}x^2$$

(D)
$$1+x$$